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Abstract. We analyze in detail the constraints on SUSY-model parameters obtained from K–K mixing in
the hypothesis of a splitted SUSY spectrum. FCNC contributions from gluino–squark–quark interactions
are studied in the so-called mass-insertion approximation. We present boundaries on mass insertions and on
SUSY mass scales. We improve on previous results by including the NLO-QCD corrections to the ∆S = 2
effective Hamiltonian and the complete set of B parameters for the evaluation of hadronic matrix elements.
A full set of magic numbers that can be used for further analyses of these models is also given. We find
that the inclusion of NLO-QCD corrections and the B parameters change the results obtained at LO and
in the vacuum insertion approximation by an amount of about 25–35%.

1 Introduction

It is well known that supersymmetry (SUSY) introduces
many new sources of flavor-changing neutral currents
(FCNC) which give strong constraints on the construc-
tion of extensions of the standard model (SM).

A common feature of these models is that FCNC ef-
fects are induced by SUSY-breaking parameters that mix
different flavors. In the literature, several ideas have been
proposed in order to suppress unwanted FCNC effects.
For instance, in models where SUSY breaking is induced
by gauge interactions [1], SUSY-breaking parameters are
either flavor-blind or are dominated by the dilaton multi-
plet of string theory [2]. Alternatively, flavor symmetries
are used to provide either a sufficient degeneracy between
the first two generations of sfermions [3] or an alignment
between quark and squark mass matrices [4].

Here we want to investigate the hypothesis that the
average squark mass of the first two generations is much
higher then the rest of the spectrum of (s)particles [5–8].
Throughout the paper we indicate the average mass of the
heavy scalar squarks as Msq and the typical mass scale of
gauginos and of the other light sparticles as mg̃. Small
Yukawa couplings of the first two generations of scalars
to Higgs doublets, together with masses of the rest of the
supersymmetric spectrum close to the weak scale, allow
a natural electroweak symmetry breaking (EWSB). This
scenario has very interesting phenomenological signatures
[8] and can be easily realized in string theory [9].

We consider gluino–squark-mediated FCNC contribu-
tions to ∆MK and εK in the neutral K-system. The effect
of the most general squark mass matrix for this class of
models is studied. In some cases, further restrictions on the
squark masses are required, and other contributions can

be more important. In particular, chargino–squark–quark
interactions should be considered also. We postpone a dis-
cussion that would include these effects to a subsequent
work.

We work in the so-called mass-insertion approximation
[10]. In this framework, one chooses a basis for fermion
and sfermion states where all the couplings of these par-
ticles to neutral gauginos are flavor-diagonal and flavor-
changing (FC) effects are shown by the nondiagonality of
sfermion propagators. The pattern of flavor change, for
the K system, is given by the ratio

(δd
ij)AB =

(md̃
ij)

2
AB

M2
sq

, (1)

where (md̃
ij)

2
AB are the off-diagonal elements of the d̃-

mass-squared matrix that mixes flavors i, j for both left-
and right-handed scalars (A, B =left, right); see, e.g., [11].
The sfermion propagators are expanded as a series in terms
of δs, and the contribution of the first term of this expan-
sion is considered.

The supersymmetric flavor problem consists in build-
ing viable models in which FCNC are suppressed without
requiring excessive fine tuning of the parameters.

In models with a split spectrum of sparticles, in which
the average mass of the lightest (mg̃) is in the electroweak
or TeV region, two scenarios are possible:

1. For reasonable values of Msq, the suppression of FCNC
requires small δs values. Thus, by fixing Msq, one can
find constraints on δs; see [11,12], and for a very recent
NLO analysis, [13];

2. For natural values of δs, say O(1) or the order of the
Cabibbo angle, O(0.22), one finds that the only way to
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get rid of unwanted FCNC effects is to have squarks of
the first two generations that are heavy enough. Thus,
by fixing the δs, one can find constraints on the min-
imal values for Msq. Large values of Msq, however,
induce large values for the GUT masses of the third
generation of squarks via Renormalization-group equa-
tions (RGE). Consequently, there can be fine-tuning
problems for the Z-boson mass. We study this issue in
Sect. 4. This point of view is adopted in [16,17].

In the past, several phenomenological analyses have been
carried out which rely on some approximations. For in-
stance, [16] does not include QCD radiative corrections,
and makes use of vacuum insertion approximation (VIA)
for the evaluation of hadronic matrix elements. Leading-
order QCD corrections to the evolution of Wilson coeffi-
cients are considered in the papers of [12,17]; these authors
find that QCD corrections are extremely important. For
example, in [17], the lower bound on the heavy squark
mass is increased by approximately a factor of 3.

In this work we discuss both of the cited scenarios
and improve on previous analyses, including the next-to-
leading order (NLO) QCD corrections to the most gen-
eral ∆F = 2 effective Hamiltonian [18], and the lattice
calculation of all the B parameters appearing in the K–K̄-
mixing matrix elements that have been recently computed
[20]. We find this very interesting for several reasons. First
of all, we find that the inclusion of these effects leads to
sizeable deviation from the previous computations. The
results obtained using only LO-QCD corrections and VIA
are corrected by about 25–35%. Furthermore, the uncer-
tainty in the final result, due to its dependence on the scale
at which hadronic matrix elements and quark masses are
evaluated, is much reduced.

Predictions for any model can be tested using the
magic numbers we provide. These numbers allow us to ob-
tain the coefficient functions at any low-energy scale, once
the matching conditions are given at a higher-energy scale.
The magic numbers will be useful, e.g., when a complete
NLO analysis of SUSY contributions to ∆F = 2 processes
(which should include also chargino-exchange effects) will
be implemented in the future.

A complete NLO calculation should include also the
O(αs) corrections to the Wilson coefficients at the scale
of the SUSY masses running in the loops. So far, we are
missing this piece of information for gluino–squark contri-
butions1. We can argue the smallness of these corrections
from the smallness of αs at such scales. This uncertainty
can be removed only by a direct computation.

The paper is organized as follows. In Sect. 2 we in-
troduce the formalism concerning the operator basis, the
Wilson coefficients and the RGE. In Sect. 3, constraints on
δs are derived. The problem of consistency of the squark
spectrum for given entries of δs’ is considered in Sect. 4.
Finally our conclusions are given in Sect. 5, and all the
magic numbers are given in the appendix.

1 The matching conditions for charged-Higgs and chargino
contributions have been recently computed [22].

2 Effective Hamiltonian
and hadronic matrix elements

In this section we describe the framework in which the ba-
sic calculations have been performed. We follow the dis-
cussion of [12] in the case Msq � mg̃. Throughout the
paper (unless otherwise explicitly specified), we assume
that the average mass of gluinos and of the squarks of the
third generation are of the same order of magnitude.

The three steps needed to use the operator product
expansion (OPE) (matching of the effective theory, per-
turbative evolution of the coefficients, and evaluation of
hadronic matrix elements) are treated in detail in the fol-
lowing subsections.

2.1 Operator basis and matching
of the effective theory

In order to apply the OPE, one has to calculate the co-
efficients and operators of the effective theory. One first
integrates out the heavy scalars of the first two genera-
tions at the scale Msq. This step produces ∆S = 1 (of
the form d̄g̃¯̃gs) as well as ∆S = 2 operators, at the same
order, 1/M2

sq. When gluinos are also integrated out at mg̃,
∆S = 1 operators generate ∆S = 2 contributions that are
proportional to m2

g̃/M
4
sq, and so can be neglected.

The final basis of operators is:

Q1 = d̄αγµ(1 − γ5)sα d̄βγµ(1 − γ5)sβ ,

Q2 = d̄α(1 − γ5)sα d̄β(1 − γ5)sβ ,

Q3 = d̄α(1 − γ5)sβ d̄β(1 − γ5)sα ,

Q4 = d̄α(1 − γ5)sα d̄β(1 + γ5)sβ ,

Q5 = d̄α(1 − γ5)sβ d̄β(1 + γ5)sα , (2)

together with operators Q̃1,2,3 which can be obtained from
Q1,2,3 by the exchange (1 − γ5) ↔ (1 + γ5).

The Wilson coefficients at the matching scale Msq are
(see, e.g., [11,12]):

C1 = − α2
s

216M2
sq

(
24xf6(x) + 66f̃6(x)

)
(δd

12)
2
LL,

C2 = − α2
s

216M2
sq

204f6(x)(δd
12)

2
RL,

C3 =
α2

s

216M2
sq

36xf6(x)(δd
12)

2
RL,

C4 = − α2
s

216M2
sq

[(
504xf6(x) − 72f̃6(x)

)
(δd

12)LL(δd
12)RR

−132f̃6(x)(δd
12)LR(δd

12)RL

]
,

C5 = − α2
s

216M2
sq

[(
24xf6(x) + 120f̃6(x)

)
(δd

12)LL(δd
12)RR

−180f̃6(x)(δd
12)LR(δd

12)RL

]
, (3)
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where x = (mg̃/Msq)2, and

f6(x) =
6(1 + 3x) lnx + x3 − 9x2 − 9x + 17

6(x − 1)5
,

f̃6(x) =
6x(1 + x) lnx − x3 − 9x2 + 9x + 1

3(x − 1)5
. (4)

The coefficients for the operators Q̃1,2,3 are the same as
those of Q1,2,3 with the replacement L ↔ R. The authors
of [12,16,17] use the matching coefficients directly in the
limit x → 0. However, we have contemplated also the ex-
treme case of mg̃ ∼ Msq/2, so that we keep the whole
expression. Of course, the value of the coefficients is the
same as that of [12,16,17] in cases where x � 1.

As we have said, NLO corrections to these coefficients
have not been computed yet. We assume they are negli-
gible, in view of the smallness of αs(Msq) and of the fact
that similar corrections turn out to be rather small in the
SM and the two-Higgs doublet model, and for the chargino
contribution in the constrained MSSM [22]. Our effective
Hamiltonian is so affected by a residual renormalization-
scheme dependence because of the missing piece of
O(αs(Msq)) in the matching.

2.2 Evolution of Wilson coefficients and running of αs

In order to evolve the Wilson coefficients between Msq
and the scale at which hadronic matrix elements are eval-
uated (µ = 2GeV), one has to account for the presence of
all particles whose mass is intermediate between the two
scales, both in the β function of αs and in the anomalous
dimension matrix (ADM) of the operators. Regarding the
former, one has [25]:

β(αs) = −β0α
2
s − β1α

3
s + O(α4

s), (5)

β0 =
1
3

(
11Nc − 2nf − 2Ncng̃ − 1

2
nq̃

)
, (6)

β1 =
1
3

(
34N2

c − 13N2
c − 3

Nc
nf − 16N2

c ng̃

−4N2
c − 3

2Nc
nq̃ + 3

3N2
c − 1

2Nc
nq̃ng̃

)
, (7)

where Nc = 3 for the color SU(3), and nf is the number
of fermion flavors. The terms proportional to ng̃ and nq̃

represent, respectively, the gluino and light scalar contri-
butions. One has ng̃=1 and nq̃=4 evolving between Msq
and mg̃ and ng̃ = nq̃=0 evolving from mg̃ to a lower mass
scale.

In [18], the ADM of the operators was computed at
NLO. In that paper, since all SUSY particles are taken
to be heavy, only loops with fermions and gluons are con-
sidered. This result must be modified to take into account
that, from Msq to mg̃, the squarks of the third generation,
as well as gluinos, can also run in the loops. As a matter of
fact, for the K system, light third-generation squarks and
gluinos can enter two-loop ADMs only via the renormal-
ization of the gluon propagator. An explicit calculation

shows that the required modification consists in consider-
ing the ADM of [18] as a function of nf + Nc ng̃ + nq̃/4
when one evolves between the heavy squark and gluino
mass scales, and as a function of nf below the latter scale.
This substitution is no more true if the squarks of the first
two generations are light too.

The value of the Wilson coefficients at the hadronic
scale µ = 2 GeV, where matrix elements are computed,
can then be easily calculated. Following [18], one evolves
between two scales according to:

C(µ) = N̂ [µ] Û [µ, M ] N̂−1[M ] C(M),

N̂ [µ] = 1̂ +
αs(µ)

4π
Ĵ(µ),

Û [µ, M ] =
[
αs(M)
αs(µ)

]γ̂(0)T /(2β0)

, (8)

where γ̂(0) is the LO-ADM, and C(µ) are the Wilson co-
efficients arranged in a column vector. This formula is
correct up to the NLO. Û [µ, M ] gives the LO evolution
already computed in [12] while Ĵ gives the NLO correc-
tions calculated in [18]. Ĵ depends on both the number
of active particles at the scale µ and the renormalization
scheme used for its computation. We have used Ĵ in the
same scheme used for the lattice calculation of hadronic
matrix elements, the Landau–RI scheme (LRI). In this
way the renormalization scheme dependence of the final
result, at the scale at which hadronic matrix elements are
evaluated, cancels out at this perturbative order. As al-
ready stressed, for a complete scheme independence of our
result, one should include also the NLO corrections of the
Wilson coefficients at the high matching scale.

We provide here the full set of Wilson coefficients at
µ=2 GeV as functions of Msq and mg̃ (the so-called magic
numbers). We find

Ci(µ) =
5∑

r,j=1

[
b
(r)
ij +

αs(mg̃)
4π

c
(r)
ij

]
αar

s (mg̃) Cj(mg̃),

Ci(mg̃) =
5∑

r,j=1

[
d
(r)
ij +

αs(mg̃)
4π

e
(r)
ij +

αs(Msq)
4π

f
(r)
ij

]

×
(

αs(Msq)
as(mg̃)

)a′
r

Cj(Msq). (9)

The complete expression of ar, a
′
r, b

(r)
ij , . . . , is given in the

appendix. Equation (9) is useful for testing predictions for
any model, once the two scales are fixed. The magic num-
bers for the evolution of C̃1−3 are the same as the ones
for the evolution of C1−3. Equation (9) and the formulas
of the appendix can be used with B parameters evaluated
at µ = 2 GeV (see (12)), in order to determine the contri-
bution to ∆MK and εK at NLO in QCD for any model of
new physics in which the new contributions with respect
to the SM originate from the extra-heavy particles. It is
sufficient to compute the values of the coefficients at the
matching scales Msq and mg̃ and put them in (9).



350 R. Contino, I. Scimemi: The supersymmetric-flavor problem for heavy first-two-generation scalars

2.3 Hadronic matrix elements

The hadronic matrix elements of the operators of (2) in
the VIA are:

〈K0|Q1|K̄0〉VIA =
1
3
MKf2

K ,

〈K0|Q2|K̄0〉VIA = − 5
24

(
MK

ms + md

)2

MKf2
K ,

〈K0|Q3|K̄0〉VIA =
1
24

(
MK

ms + md

)2

MKf2
K ,

〈K0|Q4|K̄0〉VIA =

[
1
24

+
1
4

(
MK

ms + md

)2
]

MKf2
K ,

〈K0|Q5|K̄0〉VIA =

[
1
8

+
1
12

(
MK

ms + md

)2
]

MKf2
K , (10)

where MK is the mass of the K meson and ms, md are the
masses of the s and d quarks, respectively. An analogous
definition holds for Q̃1,2,3.

Hadronic matrix elements can be evaluated nonpertur-
batively introducing B parameters, defined as follows:

〈K0|Q1(µ)|K̄0〉 =
1
3
MKf2

KB1(µ),

〈K0|Q2(µ)|K̄0〉 = − 5
24

(
MK

ms(µ) + md(µ)

)2

×MKf2
KB2(µ),

〈K0|Q3(µ)|K̄0〉 =
1
24

(
MK

ms(µ) + md(µ)

)2

MKf2
KB3(µ),

〈K0|Q4(µ)|K̄0〉 =
1
4

(
MK

ms(µ) + md(µ)

)2

MKf2
KB4(µ),

〈K0|Q5(µ)|K̄0〉 =
1
12

(
MK

ms(µ) + md(µ)

)2

×MKf2
KB5(µ), (11)

where Qi(µ) are the operators renormalized at the scale
µ. The B parameters for Q̃1,2,3(µ) are the same as those
of Q1,2,3(µ).

In the computation of Bi for the operators 2–5, smaller
contributions of higher order in chiral expansion, coming
from the axial current, have been neglected. A detailed
explanation of the reasons for this approximation can be
found in [20]. The definition of B parameters in (11) takes
explicitly into account this approximation, and when it is
used, the low-scale (µ) dependence of the final result is
explicitly canceled in the product of coefficient functions
and hadronic matrix elements.

The B parameter of the first operator, usually referred
to as BK , has been extensively studied on the lattice and
used in many phenomenological applications (see, e.g., [23,
24]). We have considered its world average [23]. The other
Bi have been taken from [20] (for another determination
of these Bi, calculated with perturbative renormalization,
see [21]).

Table 1. Constants used for phenomenological analysis

Constants Values

αem(MZ) 1/127.88

αs(MZ) 0.119

MK 497.67 MeV

fK 159.8 MeV

md(2 GeV) 7 MeV

ms(2 GeV) 125 MeV

mc 1.3 GeV

mb 4.3 GeV

mt 175 GeV

sin2 θW (MZ) 0.23124

All the B parameters are evaluated at a scale of 2 GeV
in the LRI renormalization scheme:

B1 (µ = 2 GeV) = 0.60 ± 0.06,

B2 (µ = 2 GeV) = 0.66 ± 0.04,

B3 (µ = 2 GeV) = 1.05 ± 0.12,

B4 (µ = 2 GeV) = 1.03 ± 0.06,

B5 (µ = 2 GeV) = 0.73 ± 0.10. (12)

In the literature to date, all phenomenological analyses
on this subject have used the VIA and have computed
Wilson coefficients and quark masses at a scale varying
from 0.5–1 GeV. We will see that this represents in some
cases quite a rough approximation.

Finally, we give in Table 1 all the numerical values of
the physical constants we have considered. All coupling
constants and sin2 θW (MZ) are meant in the MS scheme
[26].

3 Constraints on δs

We are ready to provide a set of constraints on SUSY
variables coming from the KL– KS mass difference, ∆MK ,
and the CP violating parameter εK , defined as

∆MK = 2Re〈K0|Heff |K̄0〉,
εK =

1√
2∆MK

Im〈K0|Heff |K̄0〉. (13)

The parameter space is composed of two real and four
complex entries, that is Msq and mg̃, and (δd

12)LL, (δd
12)LR,

(δd
12)RL, and (δd

12)RR, respectively.
Neglecting interference among different SUSY contri-

butions, we give upper bounds on δs, at fixed values of
Msq and mg̃, with the condition Msq > mg̃. In this way
one gets a set of constraints for each individual δs. Indeed,
since we are interested in model-independent constraints,
it is meaningful to study the interference of cancellation
effects only in specific models.
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The physical condition used to get the bounds on δs is
that the SUSY contribution (proportional to each single
δs) plus the SM contribution to ∆MK and εK do not ex-
ceed the experimental value of these quantities. As far as
the SM contribution to ∆MK is concerned, we assume
that the values of the CKM elements Vcd and Vcs are
unaffected by SUSY. This implies the (very reasonable)
hypothesis that SUSY does not significantly correct tree-
level weak decays. The value of the SM contribution to εK

instead depends on the phase of the CKM matrix. This
phase can be largely affected by unknown SUSY correc-
tions, and can be treated as a free parameter. We put the
CKM phase at zero so that the experimental value of εK is
completely determined by SUSY. Finally, to be even more
conservative, we subtract one standard deviation from the
values of the B parameters.

The final results are shown in Tables 2–7 for gluino
masses of 250, 500, and 1000 GeV. We consider the heavy
squark masses expected in some common models (see, e.g.,
[5–8]).

The constraints that come from the four possible in-
sertions of δs are presented: in the first and second rows,
only terms proportional to (δd

12)LL and (δd
12)LR, respec-

tively, are considered; in the last two rows, the contri-
butions of operators with opposite chirality, RR and RL,
are also evaluated, by assuming (δd

12)LR = (δd
12)RL and

(δd
12)LL = (δd

12)RR.
In each column of the table, we show the bounds on δs

in the various approximations that one can use for their
determination: without QCD correction and in VIA, with
LO-QCD corrections and in VIA, with LO-QCD correc-
tions and with lattice B parameters, and, eventually, with
NLO-QCD corrections and lattice B parameters. Compar-
ing the values of our constraints at LO-VIA with those
found from the authors of [12], we find some differences.
The reason is twofold. On the one hand, they do not con-
sider the SM contribution to ∆MK ; on the other, they
evaluate the hadronic matrix elements at a scale µ̃, such
that αs(µ̃) = 1. This latter choice may be questionable,
because at this scale strong interactions break perturba-
tion theory.

The combination of B parameters and NLO-QCD cor-
rections changes the LO-VIA results by about 25–35%.
As expected [12], the tightest constraints are for the cases
(δd

12)LL = (δd
12)RR and (δd

12)LR = (δd
12)RL. In these cases,

the coefficients proportional to (δd
12)LL(δd

12)RR, (δd
12)LR

(δd
12)RL dominate the others.

We have checked that the uncertainties of the results,
due to higher perturbative orders, are sizeable: as high as
10% in some cases.

4 Constraints on squarks spectrum

In this section, following the discussion of [16], we provide
a different kind of constraint.

For fixed values of δs and of the average light spar-
ticle mass, mg̃, it is possible to calculate the minimum
value of Msq necessary to suppress the FCNC at an ex-
perimentally acceptable level. Here we give constraints on

Msq [TeV]

0.50 1.00 1.50 2.00

4

10

16

LO

NLO

LO, VIA

No Qcd, VIA

mg̃ [TeV]

Fig. 1. Lower bounds on Msq from ∆MK with various ap-
proximations for case I with K = 0.22. In this case, the larger
corrections to LO-VIA come from the B parameters

Msq and discuss their consistency. Using renormalization-
group equations, one finds that a too-large Msq can drive
the average mass of the third generation of sfermions, mf̃ ,
to zero or negative values at the TeV scale. To circum-
vent this problem, a minimum value for mf̃ (µGUT) at the
GUT scale has to be chosen. If mf̃ (µGUT) is too high (say,
more then 3–4 TeV), however, a too- large fine-tuning of
the SUSY parameters is required in order to account for
the observed mass of the Z boson, and severe naturalness
problems arise [14,15]. This problem is studied in [16,17].

One obtains constraints about the consistency of mod-
els with a splitted mass spectrum following three steps:
– determining the minimum value of Msq necessary to

suppress FCNC (this is discussed in Sect. 4.1);
– computing the maximum value of Msq allowed by posi-

tiveness of light scalar masses and fine-tuning (for more
about this, see Sect. 4.2);

– combining the previous two results one can determine
regions of allowable values of Msq that satisfy both the
requests of the previous points (we comment about this
in Sect. 4.3).

4.1 Minimum values for heavy squark mass

In order to obtain constraints on Msq one has to specify
a value for δs. We consider the cases

(δd
12)LL (δd

12)LR (δd
12)RL (δd

12)RR

I K 0 0 0

II 0 K 0 0

III K 0 0 K
IV 0 K K 0

(14)

where K can take the values (1, 0.22, 0.05). We have cho-
sen these entries to leave aside possible accidental cancel-
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Msq [TeV]

0.50 1.00 1.50 2.00

20

50

80

No Qcd, VIA

LO, VIA

LO

NLO

mg̃ [TeV]

Fig. 2. Lower bounds on Msq from ∆MK with various approx-
imations for case III with K = 0.22. In this case, the larger cor-
rections to LO-VIA come from NLO perturbative corrections

Msq [TeV]

0.50 1.00 1.50 2.00
1

10

100

1000

I

II

III

IV

mg̃ [TeV]

Fig. 3. The full (colored) lines give the lower bounds on Msq

necessary to suppress FCNC, with K=1 for the various cases.
An upper bound on Msq is derived in order to satisfy fine-
tuning requirements; it is shown by the dashed line. The two
kinds of constraints are not compatible in this case

lations. The cases in which K=1, are, of course, extreme
cases: One may wonder about the consistency of mass-
insertion approximation, as the neglected terms are of or-
der O(1). However, these cases have already been studied
in the literature, (see, e.g., [16,17]), and we report them
for completeness. The results so obtained just give an es-
timate of the mass scales that are involved, and can be
trusted if other corrections do not provide accidental can-
cellations. This can be checked only by a direct calcula-
tion. The assumptions made for the SM contribution and
the B parameters are the same as in Sect. 3.

In order to monitor the effect of the different correc-
tions on the final result, we show in Figs. 1, 2 the lower
bound obtained for cases I and III with K = 0.22 (the

Msq [TeV]

0.50 1.00 1.50 2.00
1

10

100

1000

I

II

III

IV

mg̃ [TeV]

Fig. 4. The same as in Fig. 3, with K=0.22. Cases I and II
are now compatible with fine-tuning requirements

Msq [TeV]

0.50 1.00 1.50 2.00
1

10

100

II

III

IV

mg̃ [TeV]

Fig. 5. The same as in Fig. 3, with K=0.05. Case I is not drawn
since no lower bound on Msq can be obtained in this case. Cases
II and III are now compatible with fine-tuning requirements

other cases give similar results). As we see, B parameters
and NLO-QCD corrections play a significant rôle in the
final computation and the correction they provide with
respect to the LO-VIA results are of the order of 25–35%.
In particular, in case I (Fig. 1), B parameters provide the
most important corrections with respect to LO-VIA re-
sults. In case III (Fig. 2), instead, corrections to LO-VIA
results are dominated by the NLO-QCD perturbative con-
tributions.

The case (δd
12)LL = (δd

12)RR is also considered in [16,
17]. The differences, at LO and without B-parameters,
between our result and the ones of [16,17] come from (i)
our inclusion of the SM contribution; (ii) the value of the
strange-quark mass; and (iii) the scale at which hadronic
matrix elements are evaluated. We agree with [16,17] for
the same choice of parameters.



R. Contino, I. Scimemi: The supersymmetric-flavor problem for heavy first-two-generation scalars 353

Notice that if the imaginary parts of δs are of the same
order as their real parts, much stronger constraints arise
from εK than from ∆MK (namely by a factor ∼ 7.7).
To be conservative, we consider in this section only con-
straints coming from the real parts of δs.

The final results are shown by the (colored) continuous
lines in Figs. 3, 4, 5. The minimum value of Msq depends
strongly on both K and on the case one considers (I, II, III,
or IV; see (14)). Notice that (δd

12)LR, (δd
12)RL, (which enter

into cases II and IV), are “naturally” small in the MSSM.
However, since we would like to do a model-independent
analysis, we have made no particular assumptions about
them. In all graphs, the strongest constraints come from
the case (δd

12)LR = (δd
12)RL 6= 0. Much lower constraints

are generally obtained in cases I and II. In Fig. 5, case I
has not been drawn, since no constraint can be derived.

4.2 RGE for the masses of the third generation
of scalars

It is well known that large values of Msq can drive the mass
of the third generation of scalars to negative values via
RGE. Let us consider the two-loop RGEs for the mass mf̃

of the third generation of scalars, f̃ . In the DR
′
scheme

(see, e.g., [27]), with two generations of heavy scalars, one
has

µ
d
dµ

mf̃ (µ) = − 8
4π

∑
i

αi(µ) C f̃
i (m2

G)i(µ)

+
32

(4π)2
∑

i

α2
i (µ) C f̃

i M2
sq, (15)

where C f̃
i is the Casimir factor for f̃ in the SU(5) normal-

ization, the sums are over the gauge groups SU(3), SU(2),
and U(1), and mG denotes the gaugino masses. In (15),
Yukawa couplings are neglected: These couplings drive the
light masses to even lower values and so, in this respect,
our choice is a conservative one. Moreover, the introduc-
tion of Yukawa interactions requires further assumptions
on SUSY parameters (see, e.g., [17]) that we do not discuss
in this paper.

The solution of (15) between a grand unification theory
(GUT) scale µGUT ∼ 2 × 1016 GeV, and µ ∼ 1 TeV can
be easily written as

m2
f̃
(µ) = m2

f̃
(µGUT)

−
∑

i

16
4πβ0

i

[
αi(µGUT) − αi(Msq)

]
C f̃

i M2
sq

+
∑

i

2
β0

i

[
m2

G(µGUT) − (m2
G)i(Msq)

]
C f̃

i

+
∑

i

2
β0

i

[
(mG)2i (Msq) − (m2

G)i(µ)
]
C f̃

i , (16)

where β0
i are the β-function LO coefficients of the ith

gauge coupling. In (16), we have considered a common
gaugino mass mG at the GUT scale; as for the couplings,

we have evolved them starting backward from µ = MZ .
Note that in (16), the contribution of the heavy scalars
has been decoupled at Msq.

Equation (16) can be used in order to derive consis-
tency constraints on the values of Msq and m2

G(µGUT)
once the values of m2

f̃
(µ) and of m2

f̃
(µGUT) are fixed. The

latter can be determined according to the following re-
quirements. First, m2

f̃
(µ) must be at least positive, such

as to leave color and electric symmetries unbroken. The
value of m2

f̃
(µGUT) determines the amount of fine-tuning

necessary in order to achieve the electroweak symmetry
breaking. Following [14], the necessary fine-tuning scales
approximately as 10% × (0.3 TeV/mQ̃3

(µGUT))2 for the
squark doublet of the third generation Q̃3. We have calcu-
lated the constraints on Msq and m2

G(µGUT) coming from
(16) in the case f̃ = Q̃3, choosing for m2

Q̃3
(µGUT) the

value of (3.5 TeV)2. The latter choice corresponds to a
fine-tuning of more than 0.1%.

At fixed values of m2
Q̃3

(µ) and m2
Q̃3

(µGUT) (which de-
pend on Msq and mG), one can plot the upper value of Msq
as function of mG. The result is the (black) dashed line of
Figs. 3, 4, 5. One finds that Msq cannot be much larger
than about 25 TeV. Of course, this is just an estimate of
this limiting value. The inclusion of Yukawa couplings, of
more severe fine-tuning requirements, and of other effects
can only lower this limit.

4.3 Final remarks

In Figs. 3, 4, 5, we combine the constraints derived in the
two previous subsections. These figures (together with Ta-
bles 2–7) suggest that also models with a split mass spec-
trum need further assumptions to be phenomenologically
viable, i.e., one has to introduce flavor symmetry or dy-
namical generation of degenerate scalar masses [16].

Without these further hypotheses, most of the cases
that we have considered face fine-tuning problems. In par-
ticular, values of K ∼ O(1) are hardly acceptable. Al-
though K ∼ O(0.22) and K ∼ O(0.05) have better
chances, they must be treated carefully.

5 Conclusions

In this work, we analyze in detail the constraints on SUSY-
model parameters coming from K–K oscillations in the hy-
pothesis of a split SUSY spectrum. FCNC contributions
coming from gluino–squark–quark interactions, working
in the so-called mass-insertion approximation, have been
considered. We provide boundaries on mass insertions and
on SUSY mass scales, and we discus their consistency.
Previous results, including NLO-QCD corrections to the
∆S = 2 effective Hamiltonian, and B parameters for the
evaluation of hadronic matrix elements, have been im-
proved. A full set of magic numbers is provided, that can
be used for further analyses.
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Table 2. Limits on Re(δd
12)AB from ∆MK with gaugino masses

of 250 GeV

Msq [TeV] No-QCD, VIA LO-VIA LO, Bi NLO, Bi√
|Re(δd

12)2LL|
2 3.1 × 10−2 3.6 × 10−2 4.9 × 10−2 4.9 × 10−2

5 7.5 × 10−2 8.8 × 10−2 0.12 0.12

10 0.15 0.18 0.25 0.24√
|Re(δd

12)2LR|
2 2.1 × 10−2 1.4 × 10−2 1.8 × 10−2 1.6 × 10−2

5 9.8 × 10−2 6.5 × 10−2 8.2 × 10−2 7.2 × 10−2

10 0.34 0.22 0.28 0.25√
|Re(δd

12)2LR = Re(δd
12)2LR|

2 6.6 × 10−3 3.5 × 10−3 3.5 × 10−3 2.8 × 10−3

5 1.5 × 10−2 7.7 × 10−3 7.9 × 10−3 6.4 × 10−3

10 3.0 × 10−2 1.5 × 10−2 1.5 × 10−2 1.2 × 10−2√
|Re(δd

12)2LL = Re(δd
12)2RR|

2 1.1 × 10−2 5.2 × 10−3 5.1 × 10−3 4.1 × 10−3

5 4.1 × 10−2 1.6 × 10−2 1.6 × 10−2 1.3 × 10−2

10 0.10 3.6 × 10−2 3.4 × 10−2 2.7 × 10−2

Table 3. Limits on Re(δd
12)AB from ∆MK with gaugino masses

of 500 GeV

Msq [TeV] No-QCD, VIA LO-VIA LO, Bi NLO, Bi√
|Re(δd

12)2LL|
2 3.8 × 10−2 4.5 × 10−2 6.1 × 10−2 6.1 × 10−2

5 8.1 × 10−2 9.6 × 10−2 0.13 0.13

10 0.16 0.19 0.26 0.26√
|Re(δd

12)2LR|
2 1.6 × 10−2 1.1 × 10−2 1.3 × 10−2 1.2 × 10−2

5 6.3 × 10−2 4.2 × 10−2 5.3 × 10−2 4.7 × 10−2

10 0.21 0.14 0.17 0.15√
|Re(δd

12)2LR = Re(δd
12)2LR|

2 9.6 × 10−3 4.6 × 10−3 4.5 × 10−3 3.6 × 10−3

5 1.7 × 10−2 8.5 × 10−3 8.7 × 10−3 7.0 × 10−3

10 3.2 × 10−2 1.6 × 10−2 1.6 × 10−2 1.3 × 10−2√
|Re(δd

12)2LL = Re(δd
12)2RR|

2 8.6 × 10−3 4.4 × 10−3 4.4 × 10−3 3.6 × 10−3

5 3.2 × 10−2 1.4 × 10−2 1.4 × 10−2 1.1 × 10−2

10 8.8 × 10−2 3.4 × 10−2 3.2 × 10−2 2.6 × 10−2

We have discussed the residual uncertainty of our re-
sults that arise from our ignorance of the NLO-QCD cor-
rections to the matching coefficients.

Our analysis confirms that FCNC suppression is not
easily explained by a split sparticle mass spectrum without
some amount of fine-tuning. These problems can be solved
only if further assumptions about these kinds of models
are made, e.g., flavor symmetry or dynamical generation
of degenerate scalar masses [16].

Table 4. Limits on Re(δd
12)AB from ∆MK with gaugino masses

of 1000 GeV

Msq [TeV] No-QCD, VIA LO-VIA LO, Bi NLO, Bi√
|Re(δd

12)2LL|
2 5.9 × 10−2 6.9 × 10−2 9.4 × 10−2 9.3 × 10−2

5 9.6 × 10−2 0.11 0.15 0.15

10 0.17 0.21 0.28 0.28√
|Re(δd

12)2LR|
2 1.4 × 10−2 9.7 × 10−3 1.2 × 10−2 1.1 × 10−2

5 4.6 × 10−2 3.0 × 10−2 3.9 × 10−2 3.4 × 10−2

10 0.14 8.8 × 10−2 0.11 9.8 × 10−2√
|Re(δd

12)2LR = Re(δd
12)2LR|

2 4.2 × 10−2 9.8 × 10−3 7.8 × 10−3 6.0 × 10−3

5 2.2 × 10−2 1.1 × 10−2 1.1 × 10−2 8.5 × 10−3

10 3.6 × 10−2 1.8 × 10−2 1.8 × 10−2 1.4 × 10−2√
|Re(δd

12)2LL = Re(δd
12)2RR|

2 8.0 × 10−3 4.2 × 10−3 4.3 × 10−3 3.5 × 10−3

5 2.5 × 10−2 1.2 × 10−2 1.2 × 10−2 9.7 × 10−3

10 6.8 × 10−2 2.9 × 10−2 2.9 × 10−2 2.3 × 10−2

Table 5. Limits on Im(δd
12)AB from εK with gaugino masses

of 250 GeV

Msq [TeV] No-QCD, VIA LO-VIA LO, Bi NLO, Bi√
|Im(δd

12)2LL|
2 4.0 × 10−3 4.7 × 10−3 6.4 × 10−3 6.4 × 10−3

5 9.7 × 10−3 1.2 × 10−2 1.6 × 10−2 1.6 × 10−2

10 2.0 × 10−2 2.4 × 10−2 3.2 × 10−2 3.2 × 10−2√
|Im(δd

12)2LR|
2 2.7 × 10−3 1.8 × 10−3 2.3 × 10−3 2.1 × 10−3

5 1.3 × 10−2 8.4 × 10−3 1.1 × 10−2 9.4 × 10−3

10 4.5 × 10−2 2.9 × 10−2 3.7 × 10−2 3.2 × 10−2√
|Im(δd

12)2LR = Im(δd
12)2LR|

2 8.6 × 10−4 4.5 × 10−4 4.6 × 10−4 3.7 × 10−4

5 2.0 × 10−3 1.0 × 10−3 1.0 × 10−3 8.3 × 10−4

10 3.9 × 10−3 2.0 × 10−3 2.0 × 10−3 1.6 × 10−3√
|Im(δd

12)2LL = Im(δd
12)2RR|

2 1.4 × 10−3 6.7 × 10−4 6.6 × 10−4 5.4 × 10−4

5 5.4 × 10−3 2.1 × 10−3 2.0 × 10−3 1.6 × 10−3

10 1.4 × 10−2 4.7 × 10−3 4.5 × 10−3 3.6 × 10−3

In order to perform a complete analysis of SUSY-
FCNC effects, chargino contributions should be included.
It is also interesting to extend this kind of analysis to
∆B = 2 processes, once the calculation of B parameters
for the B–B system parameters (which is in progress [19])
is completed.
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Table 6. Limits on Im(δd
12)AB from εK with gaugino masses

of 500 GeV

Msq [TeV] No-QCD, VIA LO-VIA LO, Bi NLO, Bi√
|Im(δd

12)2LL|
2 5.0 × 10−3 5.9 × 10−3 8.0 × 10−3 7.9 × 10−3

5 1.1 × 10−2 1.3 × 10−2 1.7 × 10−2 1.7 × 10−2

10 2.1 × 10−2 2.5 × 10−2 3.4 × 10−2 3.3 × 10−2√
|Im(δd

12)2LR|
2 2.0 × 10−3 1.4 × 10−3 1.8 × 10−3 1.6 × 10−3

5 8.3 × 10−3 5.5 × 10−3 7.0 × 10−3 6.2 × 10−3

10 2.7 × 10−2 1.8 × 10−2 2.2 × 10−2 2.0 × 10−2√
|Im(δd

12)2LR = Im(δd
12)2LR|

2 1.3 × 10−3 6.0 × 10−4 5.9 × 10−4 4.7 × 10−4

5 2.2 × 10−3 1.1 × 10−3 1.1 × 10−3 9.1 × 10−4

10 4.2 × 10−3 2.1 × 10−3 2.1 × 10−3 1.7 × 10−3√
|Im(δd

12)2LL = Im(δd
12)2RR|

2 1.1 × 10−3 5.8 × 10−4 5.8 × 10−4 4.7 × 10−4

5 4.2 × 10−3 1.9 × 10−3 1.8 × 10−3 1.5 × 10−3

10 1.1 × 10−2 4.4 × 10−3 4.2 × 10−3 3.4 × 10−3

Table 7. Limits on Im(δd
12)AB from εK with gaugino masses

of 1000 GeV

Msq [TeV] No-QCD, VIA LO-VIA LO, Bi NLO, Bi√
|Im(δd

12)2LL|
2 7.7 × 10−3 9.0 × 10−3 1.2 × 10−2 1.2 × 10−2

5 1.3 × 10−2 1.5 × 10−2 2.0 × 10−2 2.0 × 10−2

10 2.3 × 10−2 2.7 × 10−2 3.7 × 10−2 3.6 × 10−2√
|Im(δd

12)2LR|
2 1.8 × 10−3 1.3 × 10−3 1.6 × 10−3 1.4 × 10−3

5 6.0 × 10−3 4.0 × 10−3 5.0 × 10−3 4.5 × 10−3

10 1.8 × 10−2 1.1 × 10−2 1.5 × 10−2 1.3 × 10−2√
|Im(δd

12)2LR = Im(δd
12)2LR|

2 5.5 × 10−3 1.3 × 10−3 1.0 × 10−3 7.8 × 10−4

5 2.9 × 10−3 1.4 × 10−3 1.4 × 10−3 1.1 × 10−3

10 4.7 × 10−3 2.3 × 10−3 2.3 × 10−3 1.9 × 10−3√
|Im(δd

12)2LL = Im(δd
12)2RR|

2 1.0 × 10−3 5.5 × 10−4 5.6 × 10−4 4.6 × 10−4

5 3.3 × 10−3 1.6 × 10−3 1.6 × 10−3 1.3 × 10−3

10 8.9 × 10−3 3.8 × 10−3 3.7 × 10−3 3.0 × 10−3
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Appendix

We give here the numerical values for the magic numbers
of (9). Only the nonvanishing entries are shown:

a(r) = (0.29, −1.1, 0.14, −0.69, 0.79)

a′
(r) = (0.46, −1.8, 0.23, −1.1, 1.3)

b
(r)
11 = (1.5, 0, 0, 0, 0) c

(r)
11 = (−3.4, 0, 0, 0, 0)

b
(r)
22 = (0, 0.0048, 1.1, 0, 0) c

(r)
22 = (0, −0.12, 2.8, 0, 0)

b
(r)
23 = (0, −0.0073, 0, 0, 0) c

(r)
23 = (0, 0.12, 1.2, 0, 0)

b
(r)
32 = (0, −0.23, 0.47, 0, 0) c

(r)
32 = (0, 6.3, 2.0, 0, 0)

b
(r)
33 = (0, 0.34, 0, 0, 0) c

(r)
33 = (0, −6.2, 0.88, 0, 0)

b
(r)
44 = (0, 0, 0, 0.52, −0.017) c

(r)
44 = (0, 0, 0, −5.7, 1.8)

b
(r)
45 = (0, 0, 0, 0.99, −2.2) c

(r)
45 = (0, 0, 0, −26, −27)

b
(r)
54 = (0, 0, 0, −0.00051, 0.020) c

(r)
54 = (0, 0, 0, 0.0086, −0.77)

b
(r)
55 = (0, 0, 0, −0.00096, 2.5) b

(r)
55 = (0, 0, 0, 0.040, 12)

d
(r)
11 = (1.0, 0, 0, 0, 0) e

(r)
11 = (−1.5, 0, 0, 0, 0)

d
(r)
22 = (0, 0, 1.0, 0, 0) e

(r)
22 = (0, 0.70, −4.9, 0, 0)

d
(r)
23 = (0, 0, 0, 0, 0) e

(r)
23 = (0, −1.1, 0, 0, 0)

d
(r)
32 = (0, −0.67, 0.67, 0, 0) e

(r)
32 = (0, −27, −9.0, 0, 0)

d
(r)
33 = (0, 1.0, 0, 0, 0) e

(r)
33 = (0, 40, 0, 0, 0)

d
(r)
44 = (0, 0, 0, 1.0, −0.015) e

(r)
44 = (0, 0, 0, 22, 0.46)

d
(r)
45 = (0, 0, 0, 1.9, −1.9) e

(r)
45 = (0, 0, 0, 41, 58)

d
(r)
54 = (0, 0, 0, −0.0081, 0.0081) e

(r)
54 = (0, 0, 0, 0.15, −0.12)

d
(r)
55 = (0, 0, 0, −0.015, 1.0) e

(r)
55 = (0, 0, 0, 0.29, −15)

f
(r)
11 = (1.5, 0, 0, 0, 0)

f
(r)
22 = (0, 0, 4.2, 0, 0)

f
(r)
23 = (0, 0, 1.1, 0, 0)

f
(r)
32 = (0, 33, 2.8, 0, 0)

f
(r)
33 = (0, −41, 0.70, 0, 0)

f
(r)
44 = (0, 0, 0, −23, 0.40)

f
(r)
45 = (0, 0, 0, −72, −28)

f
(r)
54 = (0, 0, 0, 0.18, −0.21)

f
(r)
55 = (0, 0, 0, 0.57, 15)

References

1. M. Dine, W. Fischler, M. Srednicki, Nucl. Phys. B 189,
575 (1981); C. Nappi, B. Ovrut, Phys. Lett. B 113, 175
(1982); M. Dine, W. Fischler, Nucl. Phys. B 204, 346
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